2025

BERLIN

24 - 26 September, 2025 / Berlin, Germany

DEMYSTIFYING THE PLAYBOY RAAS
Gijs Rijnders
Dutch National Police, The Netherlands

gijs.rijnders@politie.nl

www.virusbulletin.com

DEMYSTIFYING THE PLAYBOY RAAS

ABSTRACT

The Dutch National Police was able to seize infrastructure of the Playboy ransomware operation hosted in the Netherlands after
receiving a tip from an intelligence source. The Cyber Threat Intelligence team, responsible for tracking and analysing threats
against the police organization, reverse engineered and analysed the toolchain containing the builder, encryptors and decryptors.

The Playboy toolchain consists of a key generator to generate a new keypair for an affiliate, as well as encryptors and
decryptors for various operating systems and CPU architectures. The variety of support for different environments suggests
that Playboy is highly likely not created by a single developer. This paper provides a detailed analysis of these tools,
explains what logic they implement, and how they are related.

Playboy is at least partially based on the leaked Babuk ransomware source code. This conclusion was reached by the Cyber
Threat Intelligence team after writing Yara rules for patterns in the Playboy malware samples, and performing retrohunts on
VirusTotal. Since the leaked Babuk code has been used by many cybercriminals, it is difficult to pinpoint who might be
behind Playboy.

INTRODUCTION

Ransomware has been one of the most prolific forms of cybercrime in recent years. The problem keeps growing, with a
new operation seeing the light almost every month. Ransomware attacks can inflict substantial damage, and individuals and
organizations in the Netherlands become victims too. Moreover, ransomware groups pose a cyber threat to the Dutch
National Police.

The Cyber Threat Intelligence team at the Dutch National Police, from here on CTI, is responsible for investigating cyber
threats that target the police organization. Their primary objective is protecting law enforcement information and
infrastructure, together with the Security Operations Centre (SOC). CTI provides threat intelligence to the SOC and helps
them strengthen their defences. Furthermore, CTI has the capability to analyse complex malware when it poses a threat to
the police organization or Dutch society. CTI also keeps a close eye on ransomware group activities and tracks new victims
every day. The estimated number of victims recorded worldwide per month are depicted in Figure 1.

#Victims claimed by Ransomware groups (total = 9382)

5-2024
6-2024
7-2024
8-2024
9-2024
10-2024

Month

11-2024
12-2024
1-2025
2-2025
3-2025
4-2025

0 200 400 600 800 1000 1200
#Victims

Figure 1: Estimated number of ransomware victims per month worldwide in the last year.

The numbers shown represent victims claimed by ransomware groups. Hundreds of them around the world are claimed by
cybercriminals every month. Even though the tracking of victims is done by an automated system that can return some
false positives, it shows that ransomware is a very prevalent form of cybercrime. Considering the number of victims and
the severity of the damage, the Dutch National Police treats this form of cybercrime as a serious issue. It combats
ransomware through disruptive infrastructure takedowns and the No More Ransom initiative, which aims to help victims
recover their encrypted files for free [1].

In January 2025, CTI received intelligence that a Virtual Private Server (VPS) destined for cybercrime was being hosted in
the Netherlands. The cybercrime investigation teams collaborated with the hosting provider with the aim of taking control
of the infrastructure and seizing the data. Once seized, sophisticated malware was found on the VPS. The malware turned
out to be a toolchain for building ransomware encryptors and decryptors, belonging to a new RaaS (ransomware-as-a-
service) operation called Playboy.

Playboy gives us a good example of the tools and workflows ransomware operators use behind the curtains to facilitate
their cybercriminal operations. This paper sheds light on the Playboy RaaS from the perspective of the seized software
toolchain. It explains how such a ransomware operation works, and dives into the technical details of the encryptor.

DEMYSTIFYING THE PLAYBOY RAAS

RANSOMWARE-AS-A-SERVICE

Ransomware has evolved a lot over the years to be more effective and scalable, and as a result, almost every group today goes
by the ransomware-as-a-service, or RaaS model. In this model, the ransomware group operates a platform that provides the
ransomware encryptor and decryptor to other cybercriminals, who are the ones that actually choose and breach their victims.
These so-called ‘affiliates’ pay a share of the ransom payout to the ransomware group for their services. RaaS is essentially a
business model where cybercriminals that lack programming skills can get their ransomware operation up and running
affordably. Examples of famous ransomware groups that have operated the RaaS model are LockBit, Hive and DarkSide [2].

RaaS groups exist in various forms and complexities. Some have a leak page where victims are named and shamed if they
refuse to pay the ransom. Others also provide a portal where affiliates can log in and manage aspects of victims, payments,
and even build ransomware samples for new victims. Ransomware-as-a-service is a multi-billion-dollar business, and
hence an effective form of cybercrime.

The Playboy toolchain contains all the tools necessary to facilitate affiliates in their ransomware attacks. The operator can build
encryptors and decryptors for affiliates with their own encryption keys, and therefore, Playboy fits well in the RaaS model.

TOOLCHAIN

The seized VPS contained a directory called ‘Software’ with several executables, a batch file and a configuration file. This
directory contained the following files.

» Key generator: a command-line tool called ‘keygen.exe’ that generates a new pair of private and public elliptic curve
keys and stores them as ‘priv.bin’ and ‘pub.bin’.

» Key replacer tool: a command-line tool called ‘replace.exe’ that reads ‘priv.bin’ and “pub.bin’ from disk and places them
in the ransomware executables. The private key will be placed in the decryptor, and the public key in the encryptor.

* Build script: a Windows batch script called ‘build.bat’ that executes the key generator and key replacer tool in sequence.

* Encryptors: a series of precompiled ransomware executables that perform the encryption on various architectures.
Playboy supports Win32 and VMware ESXi operating systems, as well as NAS devices running Linux with an x86-64
or ARM architecture.

* Decryptors: a series of precompiled executables that perform decryption on the same operating systems and
architectures as the encryptors.

» Config file: a configuration file in JSON format called ‘config.json’ that contains parameters for the encryptor.

* Builder tool: a command-line tool that takes the parameters specified in ‘config.json’ and configures them in the
encryptor executables.

The workflow for creating a new ransomware encryptor and decryptor for an affiliate is depicted in Figure 2. The
ransomware operator first runs ‘build.bat’, which in turn executes the key generator and replacer tool. The encryptors and
decryptors for all available architectures now contain the newly generated keys. The operator can now change the
parameters in ‘config.json’ to their liking, and execute the builder tool. The ransomware is ready to use after this step.

Input for ransomware builder

Generates new
key pair
—_—————
Takes configuration

Public key Private key Configuration File file with parameters

Key Generator

Takes private and

l public key
Replacer

Tool %’
Ransomware samples
built for affiliate
Sets public key
in ransomware
B . . .

Win3z ESXi NAS (ARM) NAS (x86)

Builder
Tool

Sets parameters
from configuration
in binaries

Figure 2: The software components in the Playboy toolchain and how they are related.

DEMYSTIFYING THE PLAYBOY RAAS

The configuration file contains several parameters in JSON format. For example, it allows the operator to specify the
ransom note and some aspects of the behaviour of the encryptor. Table 1 describes all configurable parameters.

Parameter Default value Description

skip lan True Specifies whether the encryption of network drives should be skipped.

skip local False Specifies whether local drive encryption should be skipped.

note_content Listed in Figure 3 | Contents of the ransom note as presented to the victim by the encryptor.

change desktop | True Specifies whether the desktop wallpaper should be changed after encryption. The

_wallpaper wallpaper is rendered from text in the code indicating that the victim’s files are
encrypted.

self delete True Specifies whether encryptor should be automatically deleted on next reboot.

restart_system False Specifies whether infected system should be rebooted automatically after encryption.

wipe_free space | False Specifies whether the encryptor should attempt to wipe free space on local drives.

running_one True Specifies whether a mutex should be created and tested to ensure only one instance
of the encryptor can run at a given time.

pass_protect False Enables one to specify a password on the command line for the encryptor. This
password must match what is configured by the operator during build time.

Table 1: Detailed description of configurable parameters for the encryptor.

PlayBoy LOCKER\r\nHi!\r\nYour files have been stolen and encrypted. We are ready to
publish your stolen data on our blog\r\nYou can buy our decrypt service, to decrypt
your files and avoid data leakage.\r\nWe are waiting for you here!

Figure 3: Ransom note contents as configured in ‘config.json’.

The parameters from ‘config.json’ are parsed by the builder and stored in the encryptor at prepared placeholders in the
resources. These resources are referenced as RC_DATA with hard-coded identifiers 101 through 111, allowing for easy
config extraction from encryptor samples.

ENCRYPTOR

The Playboy RaaS provides encryptors for various operating systems and architectures. The Win32 variant is written in
C++ and compiled with heavy optimizations. Upon startup, the encryptor performs some basic debugger presence checks,
and parses specified command-line switches. For example, it allows a password to be specified to protect execution of the
encryptor. Furthermore, the attacker can specify a path to narrow down the encryption process, and a username and
password to probe network drives. Finally, the encryptor supports a debug mode, which can be enabled using the ‘-debug’
switch. Once enabled, it outputs verbose log messages about its behaviour.

One of the most important steps ransomware encryptors must take is to create a mutex and check for its existence. This
ensures only one instance of the encryptor can run at a given point in time. The name of the mutex can be used to detect the
presence of the Playboy encryptor on the victim’s system, and its value is: ‘Global\\EncryptorSinglelnstance’. Multiple
running instances could interfere with each other’s operations and result in irrecoverable files. While mutual exclusivity
seems essential for ransomware, Playboy implemented this as optional. Albeit enabled by default, it is configurable using
the ‘running_one’ parameter in the builder configuration file.

The next step the encryptor executes is deleting volume shadow copies. This is a simple technique commonly employed by
ransomware to make sure the victim cannot use shadow copies to recover encrypted files. There are multiple ways of doing
this, but Playboy uses the command listed in Figure 4 to do so.

cmd.exe /c vssadmin delete shadows /all /quiet

Figure 4: Shell command used to delete volume shadow copies on Windows.

Other tasks the encryptor executes before starting the encryption process are killing running processes that might keep
sensitive files open, such as Microsoft Office, SOL Server, browsers and mail clients. If files that are targeted by the
encryptor are kept open by other applications, encryption can fail. A whitelist of system files and directories is used by the
encryptor to make sure the infected system is not bricked and the victim can still run the decryptor.

The NAS variant is written in Go and contains statically linked libraries for cryptography. The NAS variant is a Linux ELF
binary file, and it contains a whitelist of files and directories to exclude from encryption. This whitelist is depicted in
Figure 5, and the presence of the paths ‘home/httpd’ and below suggest that the operator targets QNAP devices with its
NAS variant.

DEMYSTIFYING THE PLAYBOY RAAS

v19 = (x(int (__golang *x)(int)) (a3 + 24))(a4);

if (internal_stringslite_Index(v19, , (int)
internal_stringslite_Index(al, (int)
internal_stringslite_Index(al, (int)
internal_stringslite_Index(al, (int)
internal_stringslite_Index(al, (int)
internal_stringslite_Index(al, (int)
internal_stringslite_Index(al, (int)

internal_stringslite_Index(al, (int)
internal_stringslite_Index(al, (int)
internal_stringslite_Index(al, (int)
internal_stringslite_Index(al, (int)

Figure 5: Whitelist of files and directories in NAS x86 binary indicating QNAP devices are the target.

FILE ENCRYPTION PROCESS

File encryption starts after all initialization work is complete. The Win32 encryptor obtains a list of logical drives mounted
on the victim’s system using the GetLogicalDriveStrings API [3]. If a path is specified via the command-line switch, that
one is used instead.

The Win32 encryptor first removes the read-only attribute for every targeted file. The file is then renamed using the
MoveFileExW API, and the extension . PLBOY’ appended. The Linux and ESXi encryptors append a different suffix:
.plboy’ or ‘.plboyMetric’. Files are renamed beforehand, and therefore encryption is done in-place. The original file is
opened with the CreateFileW API using the GENERIC_READ and GENERIC_WRITE flags. Plaintext blocks are read
from the file and encrypted. The file pointer is then changed back to the start of the block so the encrypted data is written
back at the correct position.

1/0 completion ports

File I/O can be implemented in multiple ways on the Win32 operating system. The simplest way is using synchronous /O
with the API functions ReadFile and WriteFile in sequence on a single thread. While this is easy to understand and manage,
it does not perform very well on a large number of I/O operations. Therefore, ransomware authors have increasingly turned
to asynchronous I/O using completion ports [4] in recent years. The Sodinokibi ransomware was one of the first, dating
back as far as 2019 [5].

The Playboy ransomware also implements its file I/O using completion ports. A completion port is first created using the
CreateloCompletionPort API. The encryptor then creates a thread pool with the sole purpose of processing I/O requests
from the encryptor. Those threads call the GetQueuedCompletionStatus API repeatedly to poll for new events, and dispatch
those to worker threads accordingly. The operating system usually sends messages to a completion port when I/O
operations are completed. However, you can also queue your own requests using the PostQueuedCompletionStatus API. In
this case, you can specify a user-defined parameter and use the completion port as mechanism to efficiently route file
encryption tasks through the newly created thread pool. This is commonly how ransomware encryptors use the completion
ports, and Playboy does this as well.

The asynchronous file encryption process is depicted in Figure 6. The encryptor starts on a single thread by enumerating
the contents of a root directory, such as a logical drive root. When a subdirectory is encountered, it is visited as well. When
a file is not included in the whitelist, and marked for encryption, the encryptor queues a message in the completion port. A
polling loop then picks up the message, removes it from the queue, and dispatches file encryption to one of the workers. By
routing the encryption logic this way, threads spend a lot less time waiting for blocking I/O operations than they would
when using synchronous I/O functions.

Single Thread Thread Pool

Encrypt File

AN

Enumerate contents 1/0 Completion Port
of directory

[GetQueuedCompletionStatus }

No

>

Is target

file? [> PostQueuedCompletionStatus }

Figure 6: Process of asynchronous 1I/0 using completion ports in Playboy encryptor.

DEMYSTIFYING THE PLAYBOY RAAS

Encryption algorithms

The Win32 Playboy encryptor uses the Curve25519 elliptic curve and HC-128 [6] algorithms to encrypt files. Figure 7
shows the first steps of the encryption phase. A cryptographically secure secret key is generated for each file using the
CryptGenRandom API. To use the secret key as a point on the Curve25519 curve, the secret key is clamped [7]
directly after.

if (!CryptG

Random{hCryptProv, 0x20u, keys.FileSecretKey))

goto LABEL_57;
keys.FileSecretKey[@] &= 0xF8u;
keys.FileSecretKey[31] = keys.FileSecretKey[31] & Ox3F | 0x40;
curve25519_point_multiply(footer.FooterFileKey, keys.FileSecretKey, &base_point);
curve25519_point_multiply(&keys, keys.FileSecretKey, AttackerPublicKey);

memset(&footer.HashLength, @, 20);

*(_OWORD *)footer.sha256_state = sha_constants_0;

*(_OWORD *)&footer.sha256_state[16] = sha_constants_1;
*(_OWORD x)&footer.sha256_state[32] = sha_constants_2;

*((_QWORD *)&v17 + 1) = *((_QWORD *)&sha_constants_3 + 1);
*(_OWORD x)&footer.sha256_state[48] = sha_constants_3;
compute_sha256 (&footer, &keys, 0x20u);

Figure 7: Elliptic curve Diffie-Hellman for file encryption in Playboy encryptor.

Amnew 32-byte secret key, K, is generated for every file the encryptor processes. Furthermore, the attacker creates a pair of
secret key, K, and public key, P, for each victim. The public key, P, is embedded in the encryptor, and K in the decryptor. A
per-file public key, P_, is calculated by multiplying K, with the Curve25519 base point, which is 9. This public key, P, is
stored in the footer of the encrypted file. At this point, the attacker cannot yet decrypt the file using K. To do so, P must be
applied to K. The decryptor will then compute K * P, = K, multiplying the secret key, K, of the attacker with P, stored in
the file footer. This scheme is called Elliptic-Curve Diffie-Hellman (ECDH) [8] and is often used in ransomware as an
alternative to RSA. The per-file encryption key, K, is then hashed with SHA-256 and the result is used to encrypt blocks in
the file using the HC-128 symmetric encryption algorithm.

The other encryptors use Curve25519 as well, but the symmetric encryption algorithms differ. The Linux NAS encryptors
implement ChaCha20 [9] instead of HC-128. Moreover, the ESXi encryptor is likely based on the Babuk source code and
implements the SOSEMANUK stream cipher [10].

Encrypted file footer

It is a common practice for ransomware encryptors to append a footer to every encrypted file. The decryptor will need the
secret key to decrypt the contents of the file. Furthermore, some ransomware strains calculate integrity checks like HMAC
and checksums such as CRC32 to test whether the decryption was successful. Magic values or static markers are common
too. These are used by the decryptor to test whether the targeted file is actually encrypted by the corresponding encryptor.
Those values must be included in the encrypted file too, and the footer is a straightforward place to store them. Few
ransomware strains use a header instead of a footer, because the entire file would need to be rewritten. A footer can safely
be appended without changing the remainder of the file.

All Playboy encryptors were analysed, and they all implemented a different symmetric encryption algorithm. The footer
also contains different things in every variant. The footer created by the Win32 encryptor is the most extensive, with a size
of 72 bytes, and its contents are described in Table 2.

Offset Size Description

0 32 bytes Secret key required to decrypt the file.

32 4 bytes CRC32 checksum of secret key written to the file footer..The? Win32
decryptor code best shows the purpose of the checksum in Figure 9.

36 4 bytes Unknown value.

40 32 bytes Static marker value: “Tis coolis diffuse very andomly!’.

Table 2: Detailed description of footer stored by Win32 encryptor.

The ESXi encryptor only stores the secret key for the encrypted file in the footer. The NAS encryptor appends a static
marker value “\xAB\xBC\xCD\xDE\XxEF\xF(’ after the secret key, making the footer 38 bytes in size. Static marker values
are a common way for ransomware decryptors to test whether a file should be decrypted. The Playboy Win32 decryptor
also does this, as shown in Figure 8. It searches to the end of the file minus the footer size, reads from there, and tests for
the marker on offset 40, and if the marker is not present, it will not touch the file.

DEMYSTIFYING THE PLAYBOY RAAS

(LARGE_INTEGER uadPart - 72), @, FILE_BEGIN);
2u, S&NumberOf 8);

Figure 8: Static marker check by Playboy Win32 decryptor.

The Win32 encryptor computes the CRC32 checksum of the secret key as written to the file footer. The decryptor in turn
uses this checksum to determine whether the file footer has not been corrupted. Figure 9 lists the decompiled code for the
CRC32 check in the decryptor. It shows that if the checksum is not equal to the expected value, it spawns a message box
with an error. An interesting observation here is that the initial CRC32 value is non-standard. Translated to ASCII it reads
‘dong’, which could be a joke.

sum << 8);

if [Buffer[8] != che
{

Me (@
goto LABEL_32;

Figure 9: Code that computes CRC32 of key embedded in footer and raises error if it is incorrect.

WHO IS PLAYBOY?

The Playboy toolchain contains encryptors and decryptors for Win32, Linux and VMware ESXi, and therefore, the operators
are unlikely to be newcomers. Moreover, the different implementations in those encryptors and decryptors suggest that they
might be written by different authors, or copied from another ransomware group.

To investigate more, CTI created the Yara rules listed in the Indicators of Compromise section of this paper and performed
a retrohunt on VirusTotal, with the goal of finding related samples. With the most sophisticated implementation, the Win32
encryptor seems to be Playboy’s primary tool. Therefore, a retrohunt was performed on the NAS x86 encryptor first.

The Yara rule ‘Playboy Linux_Encryptor’ looks for the marker pattern in the code. It was executed first and detected a
very similar sample with SHA-256: a52c87¢1e8483ad75d0fc6344828426¢ce071439daf49864844ce7fc18ecea32f. The
filename ‘e_nas_linux_amd64’ also has similarities with the naming convention used by Playboy, whose NAS encryptors
are named ‘e _nas_x86’ and ‘e nas_arm’. The similar sample found by CTI is a Linux NAS encryptor that has the LockBit
3.0 ransom note shown in Figure 10 embedded.

s fastest ranso
en and encry
What guarantees that

e not a politically moti

Warning! If you do not pay the ranso

Figure 10: Ransom note embedded in e_nas_linux_amd64, referring to LockBit 3.0 and LockBitSupp.

DEMYSTIFYING THE PLAYBOY RAAS

The retrohunt results suggest that the Linux encryptor might originate from the LockBit 3.0 ransomware operation, a.k.a.
LockBit Black. However, when comparing the code, ¢ nas_linux_amd64 does not noticeably share any patterns. Moreover,
the retrohunt also returned a sample of an encryptor with indicators of Babuk, and therefore, it is more likely the Linux
encryptor originates from Babuk.

Writing an encryptor and decryptor for ESXi requires different knowledge than for Win32 and Linux, and therefore, it is
possible that those are developed by different authors. CTI created the Yara rule ‘Playboy ESXi_ Encryptor’ for the ESXi
encryptor, and executed a retrohunt with it too. A few dozen other malware samples in the VirusTotal corpus matched this
Yara rule, and those strongly suggested that the Playboy ESXi encryptor is based on the Babuk source code. A few different
patterns have been tested in a Yara rule for the Win32 encryptor, but no similar samples were found.

The source code of the Babuk ransomware builder was leaked a few years ago. Even though this ransomware operation has
long been retired, its malware is still widely being used. Furthermore, the retrohunts on VirusTotal also returned names of
several other well-known ransomware strains. This indicates that Playboy is not the only ransomware operation that
leverages the Babuk source code. Some even use it to impersonate well-established names. This has happened before with
LockBit [11], where the imposter leverages LockBit’s reputation to extort victims into paying the ransom.

CTI was able to reverse engineer the Playboy ransomware encryptors, write Yara rules for them and hunt for similar samples
on VirusTotal. Other ransomware investigations previously conducted by other researchers could provide information on the
threat actor potentially behind Playboy. If Playboy shares a significant portion of its code with another, well-known
ransomware operation, it indicates that Playboy is probably not entirely new. The Linux and ESXi encryptors in the Playboy
RaaS are likely based on the leaked Babuk source code. However, many other ransomware operations have done so too in
the past, and therefore, it is difficult to attribute the Playboy RaaS to any threat actor based on code similarity.

The analysis of the Playboy ransomware toolchain was performed statically. Some differences in the file encryption
algorithm of the various encryptors has been statically identified, but no dynamic analysis was performed. Therefore, CTI
has not determined whether the encryptors actually function properly.

CONCLUSION

The dismantling of the Playboy ransomware infrastructure, following swift collaboration between law enforcement and
cybersecurity professionals, highlights the growing importance of proactive threat intelligence and public-private
partnerships in combating cybercrime. Through reverse engineering and detailed analysis of the toolchain, it became
evident that Playboy’s design and functionality are significantly influenced by the leaked Babuk ransomware source code.
The modular architecture — supporting multiple operating systems and CPU architectures — points to a more distributed
development effort, likely involving multiple actors or affiliates, rather than a single threat actor.

Despite successful seizure of its infrastructure, the reuse of Babuk code and the adaptability of the Playboy ransomware
family demonstrate the persistent challenges in attribution and the broader risks posed by source code leaks in the
cybercriminal ecosystem. This case underscores the need for continued vigilance, robust malware detection through
techniques like YARA-based retrohunting, and cooperation across borders to prevent the re-emergence or evolution of
similar threats. Moving forward, cybersecurity defenders must stay agile and anticipate how threat actors repurpose leaked
tools to develop new variants and extend their reach across critical infrastructure and law enforcement domains.

REFERENCES
[11 No More Ransom. https://www.nomoreransom.org/en/index.html.

[2] Baker, K. Ransomware as a Service (RaaS) Explained How It Works & Examples. CrowdStrike. 30 January 2023.
https://www.crowdstrike.com/en-us/cybersecurity-101/ransomware/ransomware-as-a-service-raas/.

[3] Microsoft. GetLogicalDriveStringsW function (fileapi.h). https://learn.microsoft.com/en-us/windows/win32/api/
fileapi/nf-fileapi-getlogicaldrivestringsw.

[4] Microsoft. /O Completion Ports. https://learn.microsoft.com/en-us/windows/win32/fileio/i-o-completion-ports.

[5] Tiwari, R.; Koshelev, A. Taking a deep dive into Sodinokibi ransomware. Acronis. 3 July 2019.
https://www.acronis.com/en-eu/blog/posts/sodinokibi-ransomware/.

[6] Stream Ciphers HC-128 and HC-256. https://personal.ntu.edu.sg/wuhj/research/hc/index.html.

[71 Madden, N. What’s the Curve25519 clamping all about? https://neilmadden.blog/2020/05/28/whats-the-
curve25519-clamping-all-about/.

[8] Bernstein, D.J. A state-of-the-art Diffie-Hellman function. https://cr.yp.to/ecdh.html.
[9] Bernstein, D.J. The ChaCha family of stream ciphers. https://cr.yp.to/chacha.html.

[10] Dela Cruz, A.; Gelera, B.; De Guzman, M.; Sto.Tomas, W. New Linux-Based Ransomware Cheerscrypt Targeting
ESXi Devices Linked to Leaked Babuk Source Code. Trend Micro. 25 May 2022. https://www.trendmicro.com/
en_nl/research/22/e/new-linux-based-ransomware-cheerscrypt-targets-exsi-devices.html.

https://www.nomoreransom.org/en/index.html
https://www.crowdstrike.com/en-us/cybersecurity-101/ransomware/ransomware-as-a-service-raas/
https://learn.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-getlogicaldrivestringsw
https://learn.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-getlogicaldrivestringsw
https://learn.microsoft.com/en-us/windows/win32/fileio/i-o-completion-ports
https://www.acronis.com/en-eu/blog/posts/sodinokibi-ransomware/
https://personal.ntu.edu.sg/wuhj/research/hc/index.html
https://neilmadden.blog/2020/05/28/whats-the-curve25519-clamping-all-about/
https://neilmadden.blog/2020/05/28/whats-the-curve25519-clamping-all-about/
https://cr.yp.to/ecdh.html
https://cr.yp.to/chacha.html
https://www.trendmicro.com/en_nl/research/22/e/new-linux-based-ransomware-cheerscrypt-targets-exsi-devices.html
https://www.trendmicro.com/en_nl/research/22/e/new-linux-based-ransomware-cheerscrypt-targets-exsi-devices.html

[11]

DEMYSTIFYING THE PLAYBOY RAAS

NP AV. Ransomware Gangs Impersonate LockBit to Intimidate Victims and Leverage AWS in Latest Attacks.

24 October 2024. https://blogs.npav.net/blogs/post/ransomware-gangs-impersonate-lockbit-to-intimidate-victims-

and-leverage-aws-in-latest-attacks.

INDICATORS OF COMPROMISE

All indicators of compromise found in the Playboy RaaS investigation are listed in this section.

Yararules

rule Playboy_Linux_Encryptor
{

meta:
author = "Gijs Rijnders"
description = "Linux encryptor Playboy"
target_entity = "file"

strings:

Spattern = { C6 84 24 ?? 00 00 00 AB C6 84 24 ?? 00 00 00 BC C6 84 24 ?? 00 00 00 CD C6 84 24 ?? 00 00

00 DE C6 84 24 ?? 00 00 00 EF C6 84 24 ?? 0000 00 FO }
Sa0={C684 24 ??000000AB}
$al={C6 84 24 ?? 00 00 00 BC }
$a2={C68424??000000CD}

Sa3={C684 24?2?0000 00 DE }
$ad = { C6 84 24 ?? 00 00 00 EF }
$a5={C68424??000000F0}
Schacha20 = "chacha20"
Sgolang = "golang"

condition:

(Spattern or all of ($a*)) and Schacha20 and $golang and (uint32(0x0) == 0x464c457f)

}

rule Playboy_ESXi_Encryptor
{
meta:
author = "Gijs Rijnders"
description = "ESXi encryptor Playboy"
target_entity = "file"
strings:

Ssosemanuk_unum32 = {00 00 00 00 13 CF 9F E1 26 37 97 6B 35 F8 08 8A'}

Sfopen = "fopen"
Srb ="r+b"
Svmdk = ".vmdk"
Svmem =".vmem"
Svswp = ".vswp"
Svmsn =".vmsn"
condition:
all of them and (uint32(0x0) == 0x464c457f)
}

SHA-256

Hash

Description

c2faabcd0f2a08bdda2bb78594aa2e7b8791dbef8a81025710ebea3d9eeabeba

Builder.exe

4b89e88786555521262¢c2631a30dabae877c983431f5319410d397533fc8d86

ESXi encryptor

c4461514857dd73a9facbb53566d83a7e4dd9be8475ab93bd655a4a851d32aed

Linux (NAS) encryptor for ARM

d816be88tb691acbe3beadd75dd7578d9eb52e2129ef4c1252293de5¢64406

Linux (NAS) encryptor for x86

adf375ebd28651b88f5c6b3cdd453¢739¢18a9a50a7263b17f3tbae87380f2aa Win32 encryptor
838ef806fe284bdf81eb29e924eb049f5d8364acele554d56e98e91ce02c6c0e Build.bat
d3a525c8efb4bl5e2ae3b64ac079bb65577c8ebde7230bb0c76b21673e60f0el | Babuk ESXi encryptor

a52c¢87e1e8483ad75d0fc6344828426ce071439daf49864844ce7fcl8eeeal2f

Lockbit Linux NAS encryptor x64

204ae746f0ea2981e27af0082e18237d5b92ec786304cb34e53c4alba82a7747

Win32 decryptor

e4ab7e7855faab81f26964220bd00760b395405a8{8b3b7e83470c4782ec65¢ea

ESXi decryptor

f04914e6251511241f1c1b2ca77dc00548910edbe3122717509¢c1f4adb37e4cf

Linux (NAS) ARM decryptor

a6c819026bbff82c9ebbd58832a660045d6f123104a153705524b232b6defd03

Linux (NAS) x86 decryptor

https://blogs.npav.net/blogs/post/ransomware-gangs-impersonate-lockbit-to-intimidate-victims-and-leverage-aws-in-latest-attacks
https://blogs.npav.net/blogs/post/ransomware-gangs-impersonate-lockbit-to-intimidate-victims-and-leverage-aws-in-latest-attacks

	_MON_1809331495

